
LA-UR-
Approved for public release;
distribution is unlimited.

Title:

Author(s):

Submitted to:

Form 836 (8/00)

Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S.
Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government
retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S.
Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the
auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher’s right to
publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness.

04-3422

MSTK: A Flexible Infrastructure Library for Developing 
Mesh-based Applications

Rao V. Garimella

Preprint of article submitted to the 13th International
Meshing Roundtable, Williamsburg, VA, Sep 19-22, 2004.



MSTK - A FLEXIBLE INFRASTRUCTURE LIBRARY FOR
DEVELOPING MESH BASED APPLICATIONS

Rao V. Garimella

Los Alamos National Laboratory, Los Alamos, NM, USA, rao@lanl.gov

ABSTRACT

MSTK is a powerful framework for low-level creation and manipulation of unstructured meshes. MSTK is not a
mesh generator but it can be used to develop advanced mesh generation software and other mesh-based applications.
The salient feature of MSTK is that it is allows multiple mesh representations while presenting a common functional
interface to the developer. This allows application developers to use a mesh representation optimized for their
particular algorithms. MSTK allows developers to focus on their applications rather than on the details of mesh data
structures.

Keywords: meshing, data structures

1. INTRODUCTION

A survey of several review web sites1,2 for mesh gen-
eration software shows that there are over 100 mono-
lithic programs designed to help users generate un-
structured meshes [1, 2, 3, 4]. Combined with other
applications for numerical analysis, mesh adaptation
and graphical visualization, the amount of software to
generate and use unstructured meshes is huge.

All these applications, undoubtedly, have a common
set of needs for representing and manipulating un-
structured meshes. The typical infrastructure needed
by these applications is a set of data structures for
representing the mesh and software mechanisms for
accessing and modifying mesh data. A set of data
structures representing the mesh or a mesh represen-
tation, consists of topological mesh entities (vertices,
edges, faces, regions) and topoogical adjacencies (inter-
entity connections, e.g. face-edge, edge-region, region-
vertex). Mesh representations differ in the specific en-
tities and adjacencies they choose to explicitly store in
their data structures. The combination of a mesh rep-
resentation and a set of access mechanisms for mesh

1http://www.andrew.cmu.edu/user/sowen/softsurv.html
2http://www-users.informatik.rwth-aachen.de/

∼roberts/software.html

data is called a mesh framework or meshing infrastruc-
ture.

Although the need for common infrastructure to en-
able the rapid and efficient development of mesh based
programs is obvious, efforts to address this issue have
not gotten underway until very recently [5, 6].

One reason for the scarcity of general meshing infras-
tructure is that the needs of the various meshing and
analysis applications vary widely and there is little
agreement on the computational efficiency of different
mesh data representation. Therefore, a large num-
ber of mesh representations are in use in the com-
putational community, each tailored to a specific ap-
plication. Some simple numerical analysis programs
use only a minimal representation consisting of ele-
ments (quads, tetrahedra, etc.) defined by nodes (or
points). Other, complex applications find it neces-
sary augment the basic element-node data structures
with additional data like element-to-element or node-
to-node connectivity. Even more sophisticated appli-
cations, like meshers working directly from CAD mod-
els, evolving geometry analysis procedures, etc., find
it useful to use a much richer mesh representation con-
sisting of a full set of mesh entities with a extensive
set of topological adjacencies [7, 8]. Therefore, to



gain widespread acceptance, it is important to have
a flexible mesh framework which allows applications
to choose a mesh representation that closely matches
their needs [5, 8]. At the same time, the infrastructure
should be lightweight and efficient to have sufficient
utility for real world applications.

Fortunately, the need for general meshing infrastruc-
ture is increasingly being recognized and several de-
velopment efforts have been introduced in the last few
years. These include the Algorithm Oriented Mesh
Database3 (AOMD) [5] and the Sandia Mesh Database
(MDB) Component4 [6]. Both AOMD and MDB are
flexible representation mesh frameworks but AOMD
allows flexibility in the types of mesh entities and types
of topological adjacencies stored while MDB allows
flexibility only in the types of adjacencies stored. Both
AOMD and MDB are implemented using C++ in or-
der to utilize the object-oriented programming con-
structs offered by the language. In addition, AOMD
depends on a particular implementation of the Stan-
dard Template Library (STLport) for providing con-
structs such as container classes. There are a few
other mesh representation frameworks such as Open-
Mesh5, GrAL6 (Grid Algorithms Library), Libmesh7

and GTS8 (GNU Triangulation Software) but these
are much less general than AOMD or MDB, restrict-
ing themselves to special types of meshes such as tri-
angular or polygonal surface meshes.

MSTK (MeSh ToolKit) is a newly developed, flexible
mesh framework that provides mesh-based application
developers low-level infrastructure for reading, writ-
ing, creating and manipulating unstructured meshes
without having to design and implement their own
mesh data structures. MSTK is designed to be pow-
erful, lightweight and efficient making it suitable for
both rapid development of algorithms as well as incor-
poration into large, real world applications. For this
reason, MSTK utilizes many object-oriented program-
ming principles but is implemented in C to provide
maximum efficiency. Also, while MSTK is designed
to allow general combinations of entities and adjacen-
cies, it also encodes certain commonly used represen-
tations in order to increase its efficiency when using
these mesh representations. Some of these representa-
tions encode adjacency types that are not supported in
other general frameworks, such as element-to-element
connectivity.

In this paper, a brief description of MSTK is pro-
vided including details on the design of the framework
and the software mechanisms for interacting with it.

3http://www.scorec.rpi.edu/AOMD
4htpp://sass1693.sandia.gov/cubit/mdb.htm
5http://www.openmesh.org
6http://www.math.tu-cottbus.de/∼berti/gral/
7htpp://libmesh.sourceforge.net
8htpp://gts.sourceforge.net

MSTK is in development and some of the capabilities
described here are still in initial development phase.
However, preliminary versions of the software have
successfully been used to implement several applica-
tions such as mesh smoothing, 2D mesh reconnection,
non-conforming refinement of polygonal meshes (also
known as Adaptive Mesh Refinement or AMR) and
3D remapping within Los Alamos National Labora-
tory. MSTK is currently available to Los Alamos Na-
tional Laboratory researchers but efforts are underway
to make MSTK available for more widespread use.

2. MESH REPRESENTATIONS IN
MSTK

The success of general mesh frameworks depends on
their ability to satisfy the requirements of a wide va-
riety of applications such as visualization, mesh gen-
eration and adaptation, and numerical analysis appli-
cations. It is impossible for these frameworks to op-
timally serve the needs of all these applications with
a single method for representing the mesh. Therefore,
it is becoming increasingly common for generic mesh
frameworks to provide application developers the abil-
ity to customize the mesh representation to suit their
algorithms.

Two such flexible mesh frameworks are AOMD [5] and
Sandia MDB [6]. Both AOMD and MDB provide users
the ability to prescribe the set of adjacencies required
in the mesh representation. In addition, AOMD pro-
vides the ability to prescribe the entities that will be
explicitly stored in the representation. However, it ap-
pears unavoidable that providing users the ability to
choose an arbitrary set of topological entities and ad-
jacencies at run-time will carry a high computational
cost. This is because such a capability will require to
software to repeatedly check if an entity or an adja-
cency is readily available or must be computed before
answering any query.

MSTK approaches the problem of providing flexibil-
ity in mesh representations to application developers
differently. It defines a set of predefined mesh repre-
sentations that are commonly used and has specific
code for adjacency retrieval based on the particular
representation. Switching to the appropriate code is
done at runtime using jump tables. Since the code be-
ing invoked is tailor-made for that representation, the
code execution is expected to be faster than check-
ing for the general case. Still, in order to accomodate
the varied needs of applications, MSTK will eventually
incorporate the ability to have a general, dynamically
defined mesh representation, albeit at a higher cost.

The representations that are incorporated into MSTK
are taken from a comparative study of the efficiency
of various mesh data structures [8]. Of the ten repre-



Region (5n)

Face (12n)

Edge (7n)

Vertex (n)

4

14

3

2

5

(b) Type F4

Region (5n)

Face (12n)

Edge (7n)

Vertex (n)

4 2

3 5

2 14

(a) Type F1

(c) Type R2

Region (5n)

Vertex (n)

4

3

14

4 23

Edge (7n)

Face (12n)

(d) Type R4

Region (5n)

Face (12n)

Edge (7n)

Vertex (n)

4 2

3

143 35

Figure 1: Mesh representations of MSTK

sentations, discussed in [8], four representations (Fig-
ure 1) have been incorporated into the code. Of these,
representations F1 and F4 are full representations, i.e.,
entities of all dimensions (up to the dimension of the
mesh) are explicitly represented, and have undergone
extensive testing. Representation R2 is a reduced rep-
resentation that only represents elements (faces or re-
gions) and nodes. The adjacency set for representa-
tion R2 includes element-to-element and node-to-node
connections. Representation R4 is a reduced represen-
tation in which edges are never represented explicitly
and node-to-node connections are included. The inclu-
sion of representations such as R2 and R4 set MSTK
apart from other general mesh frameworks that in-
sist on containing only inter-dimensional adjacencies.
Both R2 and R4 are still being developed and tested.
MSTK can also be modified to include other types of
mesh representations, should they be needed.

3. MESHES, MESH ENTITIES AND
OTHER CONSTRUCTS

Unstructured meshes are natural candidates for appli-
cation of the object-oriented paradigm and therefore,
MSTK also views a mesh and its components as “ob-

jects” although the code is implemented in C for ef-
ficiency. The framework emulates ideas such as data
hiding, class hierarchy, private and public methods as
far as possible.

The primary construct in MSTK is the mesh and
MSTK can support multiple meshes simultaneously.
The mesh contains references to the entities it is made
up of, the geometric model it refers to (if available)
and the attributes defined on it.

The types of mesh entities in MSTK are the usual ver-
tices, edges, faces and regions corresponding to topo-
logical entities of dimension 0, 1, 2, and 3. At this
time, only vertices have any geometry associated with
them in terms of their coordinates. The capability to
have general curved geometry associated with edges
and faces will be incorporated in the future. In terms
of topology, MSTK supports straight-sided polygonal
faces and polyhedral regions.

Sets of entities in MSTK are handled as dynamic lists,
which can be created, destroyed, modified or queried
using multiple mechanisms.

MSTK also provides the ability to define mesh at-
tributes which can be associated with some or all en-
tities of the mesh. Attribute values can be of type in-
teger, double precision real or a pointer. The pointer
type attribute allows storage of more complex data
types such as tensors as well as handles to other enti-
ties (e.g., parent-child relationships or relationship of
entities in two meshes).

All MSTK constructs are referenced by handles to
avoid direct access of internal data by applications.

4. CLASSIFICATION OR MESH-MODEL
RELATIONSHIPS

The concept of a formal mesh-model relationships or
classification was first introduced in early mesh gen-
eration papers by Shephard et.al. [9, 10]. A mesh
entity is said to be classified on a geometric model
entity of the same or higher topological dimension if
the mesh entity forms all or part of the discretization
of the geometric model entity. A mesh entity cannot
be classified on a model entity of lower dimension. The
concept of classification is very useful for meshing ap-
plications since it allows them to verify that the mesh
conforms to the topology of the geometric model or
violates it in known ways. Classification is also useful
for mesh-based numerical analysis applications since
it simplifies specification of analysis attributes such as
boundary conditions and material properties.

However, the reality of mesh generation and numerical
analysis applications is that not all meshes come from
a strictly defined geometric model. Sometimes a mesh
is defined with respect to a simple abstract model, e.g.



a complex mesh for a Rayleigh-Taylor simulation is de-
fined on a simple rectangular domain. Still others may
have no definition of an underlying geometric domain
at all as is the case for meshes defined from range data
or 3D scanners.

To support these varying applications, MSTK sup-
ports classification of mesh entities at multiple levels
of detail. If a geometric model is available, a geomet-
ric model entity can be associated with a mesh entity.
If not, only the dimension or the dimension and ID of
an abstract geometric model entity can be associated
with a mesh entity. Finally, a mesh entity can have
no geometric model information associated with it if
such knowledge is unavailable.

This flexibility in specifying classification information
allows application to use this powerful concept while
not forcing them to always work with a formal geo-
metric modeling package.

5. MSTK FUNCTIONAL INTERFACE

MSTK provides an extensive functional interface to
enable applications to create, modify and query
meshes and mesh entities in a variety of ways. All
MSTK “objects” including meshes, mesh entities, lists
and attributes have “constructors”,“destructors”, op-
erators to modify their data and operators to query
their data. All mesh entities contain upward, down-
ward and same-level adjacency information depending
on the representation being used. Regardless of which
information is really stored, all adjacency queries are
possible for mesh entities.

The deletion of mesh entities in MSTK takes two
forms. The first form of the deletion operation de-
stroys the entity and all its associated data. It also
removes the entity from the mesh and breaks all up-
ward and downward adjacency relationships involving
it. The second form of the deletion operation only
makes the entity invisible to the mesh and other en-
tities that refer to it through adjacency relationships.
The entity itself and its data are not destroyed. This
allows applications to modify a mesh but also keep the
original mesh information around.

A special set of operators available in MSTK are op-
erators for marking mesh entities. Markers are similar
to integer attributes that can only take the value of 0
or 1; however, they are implemented much more effi-
ciently than attributes. Marking of entities has enor-
mous utility in mesh algorithms involving the union of
entity sets, often reducing algorithm complexity from
O(n2) to O(n) [8].

Figure 2: Edge Swap in 2D

(a) (b)

Figure 3: Joining two faces along a common edge

6. ADDITIONAL FUNCTIONALITY IN
MSTK

MSTK also aims to provide frequently used higher
level mesh functionality to applications. These func-
tions perform operations such as swapping an edge in
2D (Figure 2), joining two faces along a common edge
(Figure 3), evaluating the condition number quality
measure of a face, etc. These functions are being in-
corporated into MSTK as and when they are being
developed for other applications.

7. APPLICATION EXAMPLES

MSTK has been incorporated into a number of in-
house applications for meshing and analysis proce-
dures. It has been used to implement mesh improve-
ment strategies for surface and volume meshes [11, 12]
(see Figure 4). It has also been used for locally con-
servative remapping of solution data for general poly-
hedral grids [13] and for a mesh adaptation method
using mesh reconnection. Finally, MSTK has been
used to develop an non-conforming adaptive mesh re-
finement (AMR) procedure for adaptive simulations
using mimetic discretization of elliptic and parabolic
PDEs on polygonal meshes.

The example below illustrates the AMR capability on
a simple diffusion problem. Consider a square domain
with a high diffusion coefficient in the lower-left and
upper-right quadrants and a low diffusion coefficient
elsewhere. Neumann boundary conditions are imposed



(a)

(b)

Figure 4: Initial and Optimized meshes of a rocker arm
obtained from an optimization procedure developed using
MSTK

on the top and bottom boundaries. The pressure is
set to 1.0 at the left boundary and 0 at the right. The
intensity isolines and streamlines for the problem are
shown in Figures 5a,b respectively. The adaptively
refined mesh required to reduce the error to less than
10−3 is shown in Figure 5c. As seen in the figure, the
maximum refinement occurs where the problem has a
singularity.

8. FUTURE WORK

MSTK is constantly being developed to make it faster,
more compact and more functional. Many new capa-
bilities are being planned for MSTK in the near future,
some of which are described below.

As mentioned earlier, only two full mesh representa-
tions are implemented and tested in MSTK. The ad-
dition of more mesh representations will make MSTK
more appealing to a wider range of application devel-
opers. In particular, the deployment of reduced repre-
sentations will be of enormous benefit to applications
that are willing to pay a higher computational cost in
order to accommodate larger meshes. Similarly, the
capability to have user defined set of adjacencies in
MSTK will also have considerable utility.

While MSTK is reasonably memory efficient, much
work is expected to be done soon for making it more
compact using advanced data encoding techniques.
Initial estimates indicate that the number of elements
that MSTK can represent will at least be tripled by
these improvements.

Also, a major effort for making MSTK capable of han-
dling distributed meshes for parallel computing is ex-
pected to be undertaken in the near future.

Finally, higher level mesh manipulation and query
functions continue to be added to MSTK as devel-
opment continues on other applications using MSTK.

9. CONCLUSIONS

A software infrastructure, called MSTK, for low level
manipulation of unstructured meshes in a general
framework was described. MSTK is capable of rep-
resenting unstructured meshes in multiple ways while
presenting a uniform, easy-to-use interface to applica-
tion developers. MSTK offers application developers
a powerful, yet lightweight and efficient infrastructure
for managing unstructured meshes. This allows devel-
opers to focus on their primary high-level goals instead
of being bogged down in mesh data structure coding.
MSTK is already being used for a number of meshing
and analysis applications, and is quite stable.

Future work on MSTK include making MSTK capable
of handling distributed meshes, boosting its storage



0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a)

0.2 0.4 0.6 0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(b)

(c)

Figure 5: Simulation of diffusion problem with relatively
high coefficients in lower-left and upper-right quadrants
(a) Isolines of pressure (b) Streamlines (c) AMR mesh

efficiency, adding new representations and developing
more high level mesh manipulation functionality.

More information on MSTK is available from
http://math.lanl.gov/∼rao/Meshing-Projects/MSTK.

10. ACKNOWLEDGMENTS

The work of Rao V. Garimella was performed at Los
Alamos National Laboratory operated by the Univer-
sity of California for the US Department of Energy un-
der contract W-7405-ENG-36. Los Alamos National
Laboratory strongly supports academic freedom and
a researcher’s right to publish; as an institution, how-
ever, the Laboratory does not endorse the viewpoint
of a publication or guarantee its technical correctness.

The author thanks Dr. K. Lipnikov for the use of
simulation results shown in Figure 5.

References

[1] Joe B. “GEOMPACK - A Software Package for
the Generation of Meshes Using Geometric Al-
gorithms.” Advances in Engineering Software,
vol. 56, no. 13, 325–331, 1991

[2] “TetMesh - GHS3D, Ver. 3.1.” Tech. rep.,
INRIA/SIMULOG, Guyancourt, France, 2001.
(http://www.simulog.fr/tetmesh/)

[3] “LaGriT - Los Alamos Grid Tool-
box.” Tech. rep., Los Alamos National
Laboratory, Los Alamos, NM, 1995.
(http://www.t12.lanl.gov/home/lagrit/)

[4] The CUBIT Group. “CUBIT Mesh Gen-
eration Toolkit.” Tech. rep., Sandia Na-
tional Laboratories, Albuquerque, NM, 2001.
(http://sass1693.sandia.gov/cubit)

[5] Remacle J.F., Karamete B.K., Shephard M.S.
“Algorithm Oriented Mesh Database.” Pro-
ceedings of the Ninth International Meshing
Roundtable, pp. 349–359. Sandia National Lab-
oratories, New Orleans, LA, Oct 2000. Sandia
Report SAND 2000-2207

[6] Tautges T.J., Merkley K., Stimpson C.J.,
Meyers R.J. “The Sandia Mesh Database
Component (MDB).” Proceedings of the
Seventh Us National Congress on Computa-
tional Mechanics. Albuquerque, NM, Jul 2003.
(http://sass1693.sandia.gov/cubit/mdb.htm)

[7] Beall M.W., Shephard M.S. “A General
Topology-Based Mesh Data Structure.” Inter-
national Journal for Numerical Methods in En-
gineering, vol. 40, no. 9, 1573–1596, May 1997



[8] Garimella R.V. “Mesh Data Structure Selection
for Mesh Generation and FEA Applications.” In-
ternational Journal of Numerical Methods in En-
gineering, vol. 55, no. 4, 451–478, Oct 2002

[9] Shephard M.S., Finnigan P.M. “Integration of
geometric modeling and advanced finite element
preprocessing.” Finite Elements in Analysis and
Design, vol. 4, no. 2, 147–162, Aug 1988

[10] Shephard M.S., Georges M.K. “Automatic Three-
Dimensional Mesh Generation by the Finite Oc-
tree Technique.” International Journal for Nu-
merical Methods in Engineering, vol. 32, no. 4,
709–749, 1991

[11] Garimella R.V., Shashkov M.J., Knupp P.M.
“Triangular and Quadrilateral Surface Mesh
Quality Optimization using Local Parametriza-
tion.” Computer Methods in Applied Mechanics
and Engineering, vol. 193, no. 9-11, 913–928, Mar
2004

[12] Dyadechko V. Geometrically Adapted Meshes and
Iterative Solvers for Elliptic Problems. Ph.D. the-
sis, University of Houston, May 2003

[13] Garimella R., Kucharik M., Shashkov M. “Ef-
ficient Algorithm for Local-bound-preserving
Remapping in ALE methods.” Proceedings of The
European Conference on Numerical Mathematics
and Advanced Applications (ENUMATH 2003).
Prague Czech republic, Aug 2003


